УСТАНОВКА ДЛЯ ИЗУЧЕНИЯ ЦЕНТРАЛЬНОЙ ЧАСТИ ШАЛ ПРИ ПОМОЩИ СЦИНТИЛЛЯЦИОННОГО ДЕТЕКТОРА ПЛОЩАДЬЮ 200 м^{2*}

Совместно с Е. Н. Алексеевым, П. Я. Глембой, Г. В. Куликовым, А. С. Лидванским, В. Я. Марковым, Н. И. Молчановой, Б. Б. Татьяном, В. П. Сулаковым, В. А. Тизенгаузеном и Г. Б. Христиансеном

Для детального исследования структуры широких атмосферных ливней (ШАЛ) вблизи оси до сих пор использовались установки двух типов. Это сплошной «ковер» из сцинтилляциопных детекторов [1, 2] и установка, состоящая из сцинтилляционных детекторов, расположенных в узлах решетки [3, 4]. Первый тип имеет малую площадь, а второй не дает полной картины в индивидуальном ливне. Поэтому представляет интерес увеличить размеры сплошного «ковра». Более полная информация о центральной части ШАЛ важна для изучения структуры ствола ливня, а также для изучения многоствольных событий в связи с проблемой поперечных импульсов во взаимодействиях при высоких энергиях. Наряду с ЭТИМ представляет интерес изучение пространственной структуры ШАЛ, поскольку существуют противоречия между различными данными даже в среднем значении параметра *s* [5].

1. Установка состоит из 400 жидких сцинтилляторов, перекрывающих площадь 14 х 14 *м*, и шести периферийных пунктов. Четыре пункта регистрации (*1,2,5,6*) расположены на расстоянии 30 *м* и два (*3,4*) на расстоянии 40 *м* от центра установки (рис. 1). Центральная часть установки («ковер») расположена под бетонной крышей толщиной 21 e/cm^2 . Каждый периферийный пункт состоит из 18 жидких сцинтилляторов общей площадью 9 m^2 , над которыми расположены счетчики Гейгера - Мюллера: 24 счетчика площадью 21 cm^2 , 24 счетчика площадью 100 cm^2 и 72 счетчика площадью 330 cm^2 . Каждый сцинтиллятор имеет размеры 70 х 70 х 30 см и просматривается одним фотоумножителем [6].

Измерение сигналов с каждого сцинтиллятора в центральной части установки производится с помощью логарифмического амплитудно-временного преобразователя с порогом 10 рел. част. Шаг логарифмического преобразователя - 25 % . Преобразованные сигналы, приходящие от каждого из сцинтилляторов, записываются в запоминающем устройстве и затем выводятся на перфоленту. Сигналы со сцинтилляторов, расположенных в периферийном пункте, суммируются и затем преобразуются с шагом логарифмического преобразователя 10% и порогом, равным одной релятивистской частице. Сигналы с периферийных пунктов используются также для определения направления прихода ливня. Точность определения зенитного угла

^{*} Известия АН СССР, сер. физ., 40, 994 (1976).

Рис. 1. План установки: 1-6 - периферийные пункты, 7 - центральный детектор («ковер»)

 $\Delta \theta \approx 5^{\circ}$, азимутального угла $\Delta \phi \approx 15^{\circ}$. Управляющий сигнал возникает в том случае, если полное энерговыделение в «ковре» превышает заданный порог.

2. В описываемом эксперименте порог для управляющего импульса составлял $4 \cdot 10^3$ рел. част. в центральной части установки. Частота таких событий 17 в час. Для анализа было отобрано 247 ливней с осями в «ковре», с зенитвыми углами $\theta < 30^\circ$ и с числом частиц $N_e > 8 \cdot 10^4$. Согласно расчету вероятность регистрации таких ливней близка к единице, если ось ливня в «ковре» и параметр s < 1.4.

Τ - 1

							таолица т
п	т	п	т	п	т	п	т
0	< 10	8	48	16	284	24	1630
1	10	9	60	17	355	25	2120
2	12.5	10	74	18	444	26	2646
3	16	11	93	19	555	27	3300
4	20	12	116	20	694	28	4130
5	24	13	145	21	867	29	5170
6	30	14	182	22	1084	30	6450
7	38	15	227	23	1355	31	8060

3. В работе представлены предварительные результаты. Положение оси ливня определялось с высокой точностью практически во всех случаях, когда ось ливня попадала в «ковер». В предположении аксиальной симметрии ливня на ЭВМ М222 в «ковре» находилась точка, для которой дисперсия плотностей по кольцам принимает минимальное значение. Оказалось, что это положение оси совпадает с визуально найденным с отклонением меньшим 0.7 *м*. Для

большинства ливней (90%) положение оси совпадает со сцинтиллятором с максимальной амплитудой.

На рис. 2а приведен типичный пример зарегистрированного ШАЛ с осью в «ковре». Числа *m* на рисунке представляют амплитуды каждого из 400 детекторов в логарифмической шкале. Их связь с числом релятивистских частиц *n* показана в табл. 1. Наряду с «одноствольными» событиями наблюдались события со сложной структурой и многоствольные события, которые составляют несколько процентов всех ливней, попавших в «ковер» (рис. 2б).

a)

б)

Рис. 2. Примеры структуры центральной части ШАЛ: а - одноствольный ливень, б - ливень со сложной структурой

Рис. 3. Распределение отклонений в положении оси, найденной по гейгеровским счетчикам и по данным «ковра»

Число частиц R ливне находилось по данным счетчиков Гейгера - Мюллера на ЭВМ М222 с помощью метода максимального правдоподобия. При этом за априорную функцию пространственного распределения бралась функция Нишимуры и Каматы с параметром s = 1.0. Так как функции Нишимуры и Каматы для различных значений параметра пересекаются на расстояниях порядка 30 м, что соответствует расстояниям, которых находятся внешние на пункты, найденное этим методом число частиц в ливне практически не

зависит от возраста. По этой программе находилось и положение оси ливня.

Распределение отклонений положения оси, найденного по периферийным пунктам, от положения оси, найденного по «ковру», приведено на рис. 3. Среднее отклонение $\Delta R = 4.6 \, m$.

При анализе использовались случаи с положением оси внутри «ковра» и отбрасывались случаи, когда ось попадала в крайний ряд сцинтилляторов. Таким образом, чувствительная площадь «ковра» снижалась до 160 m^2 . В табл. 2 представлены данные об интенсивности ливней с $N_e > 8.10^4$, причем спектр по числу частиц взят в виде $I = A (N_e/8.10^4)^{-\kappa}$.

Рис. 4. Пространственное распределение электронов. Точки эксперимент. Ш триховые линии - функции Нишимуры и Каматы для s = 1.0, 1.1, 1.2

Совокупность экспериментальных данных для ливней с осью в «ковре» дает возможность строить индивидуальные функции пространственного распределения для расстояний 1 - 15 m по сцинтилляторам «ковра». Если аппроксимировать их в виде ~ $1/r^n$, то для обработанных ливней получается распределение по n (табл. 3).

Таблица 2

А, м ⁻² стер ⁻¹ сек ⁻¹	K	Ссылки
$(0.9 \pm 0.1) \cdot 10^{-5}$	1.4±0.2	Данная работа
$(2.8 \pm 0.3)^{-1}10^{-5}$	1.45±0.1	[7]
$(1.1 \pm 0.1) \cdot 10^{-5}$	1.5±0.1	[8]*)

*) Данные работы [8] приведены к высоте 840 гсм⁻².

Пространственное распределение электронов на расстояниях более 20 *м* от центра установки было получено по данным годоскопических счетчиков, расположенных в пунктах 1 - 6 (рис. 1). При построении простравствевного распределения использовались 247 ливней с осью внутри «ковра», найденной по показаниям центральных сцинтилляторов.

						Гаолица 3
n	0.7-0.9	0.9-1.1	1.1-1.3	1.3-1.5	1.5-1.7	1.7-1.9
Число случаев	3	6	10	17	18	19

т *с*

Как видно из рис. 4, пространственное распределение наилучшим образом описывается функцией Нишимуры-Канаты в аппроксимации Грейзена с параметром s = 1.1. Для сравнения на рисунке приведены также функции для s = 1.0 и 1.2.

Литература

- 1. Bakich A. M., Melley D., McCusker C. B. A. et al., Canad. J. Phys., 46, 30 (1968).
- 2. Miyake S., Hinotany K., Ito N. et al., Canad. J. Phys., 46, 25 (1968).
- 3. Miyake S., Hinotany K., Ito N. et al., Canad. J. Phys., 46, 17 (1968).
- Erlykin A. D., Nesterova N. M., Nikolsky S. I. et al., Proc. IX Intern. Conf. Cosm. Rays, London, 2, 731 (1965).
- 5. Стаменов И. Н., Изв. АН СССР, сер. физ, **39**, 1201 (1975).
- 6. Воеводский А. В., Дадыкин В. Л., Ряжская О. Г., Приборы и техника эксперим., № 1, 85 (1970).
- Chatterjee B., Murthy G., Naranan S. et al., Proc. VIII Intern. Conf. Cosm. Rays, Jaipur, 4, 227 (1963).
- 8. Vernov S. N., Khristiansen G. B. et al., Canad. J. Phys., 46, 197 (1968).